VITA Technologies
  • VME
  • XMC
  • FMC
  • PMC
  • VNX
  • VPX
Menu
  • VME
  • XMC
  • FMC
  • PMC
  • VNX
  • VPX
  • Articles
  • White Papers
  • Products
  • News
Menu
  • Articles
  • White Papers
  • Products
  • News
  New Products  VTI Technologies: SCC1300 Combined Sensor Improves Positioning Accuracy in Map-Matching Applications
New Products

VTI Technologies: SCC1300 Combined Sensor Improves Positioning Accuracy in Map-Matching Applications

VTI TechnologiesVTI Technologies—November 16, 20110
FacebookTwitterPinterestLinkedInTumblrRedditVKWhatsAppEmail

VANTAA, Finland–(BUSINESS WIRE)–The numerical probabilistic map-matching algorithm was developed and demonstrated by a group of researchers at the Department of Computer Systems of Tampere University of Technology (Finland), already well known and respected for its research in the field of inertial and integrated navigation.

“The aim of our study and development work was to utilize the valuable information contained in digital road maps in order to accurately determine the position of a vehicle. To achieve this we developed an algorithm for accurate sensor-based car navigation. Our approach requires a standard speed sensor as available in most cars through the OBD interface, one MEMS high performance gyro, and digital street maps,” explains Mr. Pavel Davidson, inertial navigation specialist at the Department of Computer Systems.

Map-aided dead reckoning navigation system has smaller position errors

According to Mr. Davidson, several different map-matching algorithms already exist, but they are not well adapted to situations in which GPS navigation is not available or is not reliable, as in many urban environments. The study shows that a map-aided dead reckoning navigation system has significantly smaller position errors than a traditional dead reckoning navigation system. With the aid of a street map, cross-track errors can be eliminated any time when the road segment is correctly identified, while along-track errors can be reduced after the turn. Therefore, the position accuracy depends very much on the vehicle route.

“Our solution is based on a recursive implementation of Monte-Carlo-based statistical signal processing, also known as particle filtering,” Mr. Davidson describes. The basic principle is to use random samples – also referred to as particles – to represent the posterior density of the car position in a dynamic state estimation framework where road map information is used. Since particle filters have no restrictions on the type of models and noise distribution, the velocity and heading measurement errors can be modeled accurately.

The method uses dead reckoning equations based on the vehicle’s speed and heading measurements by onboard sensors. While the vehicle is moving along a straight road, only speed information is used, whereas a gyroscope is needed when the vehicle is turning. Interestingly, the more often the vehicle turns, the more accurate is its position.

More stories

The MathWorks Announces Release 2010a of the MATLAB and Simulink Product Families

March 5, 2010

Themis Computer Announces the Industry’s First UltraSPARC(r) T2-Based Board to Utilize VITA-46 (VPX) and VITA-65 Backplane Standards

December 2, 2009

Curtiss-Wright Controls Electronic Systems Introduces New Family of Network Attached Storage File Servers

July 19, 2011

Fujitsu Launches Second Generation Ultra-fast 65GSa/s 8-Bit ADC Technology for 100G Optical Transport

September 13, 2010

Accurate and stable gyroscope is needed

“With particle filtering it is possible to reduce both cross-track and along-track errors,” says Dr. Jussi Collin, group leader at TUT, “but in order to obtain a navigation solution for long periods without GPS updates, high quality and accurate gyros are needed to measure the heading rate.”

The more accurate and stable the gyro the better, as the number of required particles can be very high with inaccurate position information. An accurate heading in turn helps to reduce the amount of computing power needed. In the tests implemented by the research group, the performance of VTI’s SCC1300 combined sensor was excellent.

“The core of the SCC1300 gyroscope is the sensor element based on VTI’s proprietary 3D MEMS technology, which results in a very stable, low noise and accurate gyro. The SCC1300 combines this gyro with a high accuracy 3-axis accelerometer in the same package. It offers interesting opportunities in these kinds of applications where extremely high accuracy is demanded,” says Mr. Ville Nurmiainen, Product Manager at VTI Technologies.

The reliability and accuracy of the algorithm developed by Tampere University of Technology was tested using data from real-world driving tests in urban environments.

“Our map-matching algorithm solution improves the positioning accuracy of navigation systems and can be applied for both vehicles and pedestrians. It can easily be adapted for real-time implementation on portable navigation devices, as the amount of computations is not large for modern signal processors,” Jussi Collin concludes.

VTI in brief

VTI Technologies is a leading supplier of acceleration, inclination and angular motion sensor solutions for transportation, medical, instrument and consumer electronics applications. In their end-use applications, VTI’s products improve safety and quality of life. The silicon-based capacitive sensors are based on the company’s proprietary 3D MEMS (Micro Electro-Mechanical System) technology. For more information, please visit www.vtitechnologies.com.

Tampere University of Technology in brief

Tampere University of Technology (TUT) is an active scientific community of 2,000 employees and more than 10,000 students. The University operates in the form of a foundation and has a long-standing tradition of collaboration with other research institutions and business life. Many of the fields of research and study represented at the University play a key role in addressing global challenges. For more information, please visit www.tut.fi.

FacebookTwitterPinterestLinkedInTumblrRedditVKWhatsAppEmail
Quick & Easy Access to Shared Backup Data Line or Channel with M8581 DB9 Matrix Switch
dB Control Awarded +$50 Million Five-Year Contract to Provide High-Power Transmitters for Military Airborne Systems
Related posts
  • Related posts
  • More from author
Eletter Products

SPONSORED: SpaceVPX Solutions From Pixus Technologies

May 28, 20250
Eletter Products

SPONSORED: Mission-Ready Chassis Management Aligned to SOSA®

May 28, 20250
Eletter Products

SPONSORED: 2300W Intelligent VPX Power Supply

May 21, 20250
Load more
Read also
Eletter Products

SPONSORED: SpaceVPX Solutions From Pixus Technologies

May 28, 20250
Eletter Products

SPONSORED: Mission-Ready Chassis Management Aligned to SOSA®

May 28, 20250
Eletter Products

SPONSORED: 2300W Intelligent VPX Power Supply

May 21, 20250
Eletter Products

SPONSORED: Small Scale 4 Slot OpenVPX and SOSA Aligned System Development

May 21, 20250
Eletter Products

SPONSORED: 3U VPX HD Switch Doubles Backplane Density

May 14, 20250
Eletter Products

SPONSORED: Rugged 1/2 ATR Aligned to SOSA, CMFF and SAVE Ready

January 30, 20250
Load more

Recent Comments

No comments to show.
  • Articles
  • White Papers
  • Products
  • News
Menu
  • Articles
  • White Papers
  • Products
  • News
  • VME
  • XMC
  • FMC
  • PMC
  • VNX
  • VPX
Menu
  • VME
  • XMC
  • FMC
  • PMC
  • VNX
  • VPX

© 2023 VITA Technologies. All rights Reserved.